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Figure 1: An example of the meta-network of the visual query builder for extracting working datasets from a massive network
database. In this case, a biologist has queried for a specific metabolite. She has then queried for experiment data items that relate
to the metabolite and then the experiments itself (the top branch). She has also queried for genes related to those metabolites (in
the lower branch), and then the proteins related to those genes. She has also queried for Gene Ontology (GO) terms related to the
genes. In the above image the radial menu, by which user queries can be easily expanded, has been opened on the gene ontology
node. The user can further include 2 different types of node, each with two different types of edge, hence the four visible segments.

ABSTRACT

The real world systems modelled by multilayer networks are fre-
quently characterised by a high level of complexity. Understanding
the most suitable definition of layer that can help a user is a signifi-
cant challenge. Due to the scale of many datasets, even finding the
entities and relationships that are of interest to the user is difficult. In
this work we describe the issues with working with large multilayer
data sources, based on the development of a multilayer network
visualization prototype. We present an in-progress prototype and
discuss future research directions for creating multilayer networks
visualization of data extracted from massive sources.
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1 INTRODUCTION

Multilayer networks, as a concept, emerged from the field on
complex networks as an alternative for modelling real-world sys-
tems [15]. They are an approach to dealing with complexity. By
introducing the new concept of layer within the graph model, inter-
actions between systems can be studied, and subsystems of interest
can be extracted. The complexity of the systems being modelled
can result from dependencies between systems, such as power-grids
and data networks [6] or from more traditional issues such as scale.
The use of layers in a data model can clarify the relationships be-
tween sub-systems, and also allow for the division of large data sets
into more conceptually manageable sub-systems. As discussed by
McGee et al. [19] the definition of layers, and the aspects which
characterise them, is still an important open challenge. Modern data
sets can contain millions of entities and billions of edges (e.g. [25] ).
To even begin answering a question a user has to extract a “working”
data set, which is one that does not contain any irrelevant data, and
contains all possible data items relevant to the user task at hand.
In the case of multilayer networks, the definition of layers is also
closely related to the definition of this initial data set. The focus
of this paper is on trying to solve this problem of the end user be-
ing overwhelmed by a the size and complexity of initial datasets.



We approach this problem by using interactive menus in a visual
query interface, that allow the user to quickly determine the size and
structure of their desired dataset, before retrieving it. We present an
early stage prototype of our approach, and we also discuss how this
approach can be a first step for layer specification, a key challenge
in the visual analytics of of multilayer networks.

2 BACKGROUND AND RELATED WORK

Within in the field of visualization there are many existing systems
which extract data from sources to build large networks (see [19]
for an extensive survey of information visualization work that can
be considered multilayer network visualization). ORION [14] is an
application that can be considered multilayer, as its data is charac-
terised as “heterogeneous” (see [15] for a full list of graph types and
synonyms that fall under the multilayer framework). Amongst other
features, the system allows users to query tables of a database, via a
tabular interface. The user can view the schema of a relational DB
and use link tables together to build networks.

The PLOCEUS application of Liu et al. [17] also creates net-
works from tabular data, providing operations such as projection
and aggregation that are not available in ORION. The output of this
tool is a new network based on the tabular data. As the application
source data for both PLOCEUS and ORION is table based (tables
are a source of node data), edges are not first class citizens in the
application (however, some metrics can be added to them). Cuenca
et al. [9] take a more visual approach to the querying of large multi-
layer networks. In their approach the data is already in the form of
a network. The goal of their approach is not to generate an initial
data set so much as to find matching patterns in a large dataset. A
heat map is used to visualise where there are structural matches to
the visual query in the target graph.

The Graphiti application of Srinivasan et al. [23], is a tool that
allows a user to model a network by showing an example of the
information they want from a input tabular dataset . This “demon-
stration based interaction” involves specifying edges between nodes,
and then based on attributes (and conditions on those attributes) of
the edge end-points (i.e. the nodes), a new network is created based
on all the edges that can be induced from the input dataset. The
goal of this visual query approach is to simplify the modeling and
updating of datasets, removing the need for text based queries and
the specification of constraints that require an existing knowledge of
a data set. Despite edges being the focus of creation, Graphiti is still
very much a node-centric application, as the edges are created based
on node properties

Another approach by which networks have been created is the
extraction of entities from a text using Named Entity Recognition
(NER), as done by the Jigsaw application [24]. In Jigsaw, different
types of entities are related based on co-occurrence within the text.
The different types of entities can be considered to make up different
layers, making this one of the earlier multilayer network visualiza-
tion applications in the domain of information visualization. None
of the approaches above integrates the concept of a layer as an entity
into their model creation.

Although not a multilayer technique, the PivotGraph approach
of Wattenberg [26] provides a novel way of summarising a network
visually. The approach does not scale to large data sets, but the
concept of grouping sets of graph vertices and edges in a single
visual node or link is a useful technique for visualizing the structure
of a dataset.

Heer and Perer [14] report that repeating the level of effort for
building a single network to answer questions raised through the
exploratory process may undermine and even dissuade analysts from
testing all hypotheses. Speed and ease of use are important fac-
tors for any new technique or application for creating or extracting
networks, especially in the case where multiple networks or lay-
ers may need to be extracted. The importance of ease of creation

of networks can also be seen in commercial products such as cen-
trifuge [1] or TouchGraph Navigator [3], where network creation
and data discovery are seen as major selling points.

2.1 Scale of data sets
As is to be expected for a topic that has emerged from the field of
complex systems, multilayer data sets are usually not trivially small.
For example, the digital humanities network data set extracted from
a research corpus, described by [18], contained over 140,000 nodes
and over 1 million edges. The domain of life sciences is coming to
recognise the importance of multilayer networks in addressing the
many challenges of the field [12]. The data sets within this domain
are vast. The STRING database of protein-protein interactions [25]
alone contains over 24 million entities and 2 billion interactions [2].
Investigations in the rising field of Systems Biology raise questions
spanning multiple such databases, accentuating the challenge of
scale. The Tulip application [5] allows some basic support for
multilayer networks (in that it allows multiple node types) and is
capable of displaying very large graphs. However, even with its
focus on large graphs, a database the size of STRING is too much to
load and display visually. There is no query interface that allows the
data set to be explored within the application, without loading it in
its entirety.

2.2 Encoding of multilayer structure
There is no standard format or API for encoding multilayer net-
works for an application. There are several implementations such
as MuxViz [10] and py3plex [22] which provide data visualization
functionality and use their own data structure. The underlying data
structure to encode a multilayer network, depends very much on
the tasks at hand. However, in general an underlying multivariate
multi-edge graph structure, will cover most cases.

2.3 Storage of multilayer data sets
The recent arrival of graph databases means that graph data no
longer needs to be stored in a tabular format [17] or in relational
databases [14]. Such formats can often reduce the importance of
edges and not recognise them as important entities in their own right.
For example ORION infers edges based on foreign keys between
tables. In a multilayer context there may be multiple edges between
data, and edges themselves may characterise whether or not entities
(either nodes or edges) belong to a specific layer. Graph databases
are considered mature enough and suitable for use in multilayer
network domains such as biology [13]. Storing graph data in a
graph database allows for more simple and direct querying of graph
structure and within graph databases both graph nodes and edges
are considered first-class citizens. Yet, we are not aware of any
graph-oriented database where layers are encoded as an entities in
their own right. In current graph database implementations, possible
encodings of layers include adding them as nodes with links to their
member nodes and edges, or adding them as labels of these nodes
and edges.

3 VISUAL QUERYING OF LARGE MULTILAYER DATA SETS

3.1 Design motivation
As part of a project working with both large digital humanities and
biological data sets, defining the subset of data of interest for visu-
alization was a challenge. Both types of expert users had different
sets of requirements and different structures of data.

The digital humanities data set was generated using NER on a
large corpus of documents concerning the formation of the Euro-
pean project post 1945. The digital humanities researchers use case
focused on browsing a large corpus to understand the relationship
between historical entities over time [18]. The biological dataset
contained data integrated from several biological sources, as well
as the experimental data of expert users, amounting to over 350,000



nodes and 46 million edges. In addition to this publicly available
data the biologists also have their own experiment data. The biolo-
gists required a system that allowed them to analyse this data in the
context of the existing publicly available data, from databases such
as STRING [25]. In both use-cases the size and density of the data
made it difficult for the users to determine a “working” set of data
to even begin their exploration and analysis. The goal of the work
described in this paper is to help them easily define their working set
of data without being overwhelmed, so they could start to analyse
and explore their data.

Defining a network structure is not a concern for either of our
datasets. Both data sets were stored in a graph database so, unlike
many of the examples in Section 2, the data are already in a network
form. Edges in each data set also contained attributes, and they
were not simply defined by their end-points. A user will want to
define an immediate “working” data set where irrelevant data has
been discarded, before they address the specific concerns of their
use case and application domain. Our goal was to give expert users
self-service access to the contents of the graph database by allowing
them to sketch the entities and relationships of interest to the task at
hand. And, as they specified their needs, it was important to quickly
allow them to get an idea of the size and structure of their potential
working dataset.

3.2 The query meta-network
In our approach a user selects a node type from their data set as their
starting point in the definition of their working set. This approach
aligns with the existing workflow used by expert users in both of our
application domains in that the will always know at least what type
of entity they are interested in starting their exportation with. All
instances of this entity will be represented by a meta-node in a meta-
network that is built visually by the user. A query is run on the back
end graph DB to immediately provide the system with information
about what attributes are available for the particular entity. When a
meta-node is added it displays the amount of underlying data nodes
represented by the meta-node (as can be seen in Figure 1).

3.3 Query constraints

Figure 2: An example of the constraint menu for the digital humanities
data set. Here nodes of the type person are being constrained to only
include those with “president” in their title.

The user can then apply constraints to the meta-node, via a menu
interface to limit the number of underlying data nodes represented
by the meta-node (see Figure 2).

3.4 The radial menu
Meta-edges can be added in a similar manner, by clicking on the
source and target meta-node and applying constraints. However, it

is more intuitive for the user to use the radial menu [7] associated
with the meta-node.

Figure 3: The radial menu as it appears for a single document in the
Digital Humanities data set.

Clicking on a meta-node entity allows a user to see the other
entities related to that original one, as well as the proportion of
relations for each type, and the type of relationship. As can be seen
in Figure 1 and Figure 3, the edge type and node type are clearly
displayed, with different segments of the radial menu depending on
the combination of edge and node type. This approach lends itself
to the rapid exploration of a database structure, allowing the user to
build queries with no prior knowledge of the relationships between
entities.

3.5 Current layer specification approach
While the definition of the network structure is not the responsibility
of the user of the system in our case, the definition of layers is, as it
very often will be dependent of the task at hand. Layers are entities
in and of themselves, however they may not necessarily be explicitly
defined within the data store. For example in the case of a digital
humanities data set with a temporal aspect, the definition of layers
based on time period depends on the entities of interest to the user. If
a user is interested in events over a five year period, a layer covering
a timespan of a decade is of little use.

The current prototype focuses on specifying the working data set,
and the specific layering required by each use case has been defined
externally, through interviews with the users. When the dataset is
retrieved from the back end system, it is automatically divided into
sets of layers based on the use case. This approach is not scalable
in terms of handling multiple different application domains, as each
will have their own structural constraints and data idiosyncrasies.

4 NEXT STEPS

Our next goal, as part of our future work, is to allow users to pro-
vide a layering definition as part of their data definition using the
meta-network. The meta-network is a visual representation that
allows domain experts to reason in terms of the types of entities and
relationships of interest. Yet, mapping a schema similar to Figure 1
to a multilayer network structure can be done in various ways. The



most simple approach may assume that layers are defined based on
node type. In this case, every meta-node leads to the creation of
a layer, and the drawn edges capture between-layer relationships.
Yet layers may also be defined by edge type, e.g. types of acquain-
tance like friends, relatives, colleagues in a social network. In this
case, between layer links may not necessarily exist, but comparison
tasks will require “identity links” to be visualised between identical
nodes in different layers. More elaborate layer definitions might also
include multiple node and edge types in the same layer; lasso interac-
tions would be a suitable vehicle for such layer definitions. Besides
the previous topological considerations, layers may also be defined
based on node or edge attributes [10, 15], whether they correspond
to measured/observed data or derived from computations.

4.1 Visualization and layer definition

Set visualization is a highly researched field in information visual-
ization [4], and clearly there is a potential relationship between the
definition of sets and the definition of layers using the meta-network.
Euler diagram based approaches provide one potential visualization
technique. Due to the complexity of layer definitions, this may result
in an Euler diagram that is not well-matched, in the sense that is does
not exactly align with the set specification, e.g. due to nodes being
duplicated in the set. Therefore an interesting approach is that of
Simonetto and Auber [20] or Simonetto et al. [21] concerning visual-
ization of overlapping sets, since it allows for subsets to be split into
disjoint parts. However, as we are also interested in using edges to
define layers, some of the more network focused visualization tech-
niques related to Euler diagrams, such as the bubble sets of Collins
et al. [8] or Kelp [11] diagrams may be a better starting point. Kelp
diagrams have already been used by Cuenca et al. [9] as part of their
overview visualization of multilayer network data sets. Bubble sets
have been applied to many different visualization types by Collins
et al. If they are included as part of the meta-network visualizations,
they also need to visualise how the layers are characterised, i.e. the
aspects, not just the entities involved.

Faceted network data visualization techniques are also very rele-
vant to our problem of eliciting layer definitions. The pivot graph
application of Wattenberg [26] allows the user to explore multivari-
ate networks through a graph-like interface of meta-nodes. Facet
Lens [16] allows the facets of a dataset to be explored and compared
using the relationships. However, neither application considers a
layer as a network entity in its own right, allowing the user to com-
pare and explore them side by side. Additionally, the slicing of
data in faceted visualization can be highly arbitrary, however, in
multilayer networks the different layers generally model a physical
reality of some kind.

5 CONCLUSION

Sources of multilayer network data can be both highly complex
and vast in terms of scale. Providing an intuitive interface to query
this data is challenging. End users demand self-service access to
data, without the requirement of technical intermediaries unfamiliar
with their domain problems. In the case of multilayer network
visualization, such an interface offers the opportunity of defining
layers intuitively and at an early stage in the process so that users
are not overwhelmed with data. In this paper, we described the
early stages of a work in progress which allows users to define their
working set of data. We highlighted the avenues of future work,
to encourage discussion with the community on the fundamental
requirements of layer definition, it’s limits, and the development of
novel visualization techniques.
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